Copied to
clipboard

G = C3×C422D5order 480 = 25·3·5

Direct product of C3 and C422D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C422D5, (C4×C20)⋊7C6, (C4×C60)⋊1C2, (C4×C12)⋊2D5, C425(C3×D5), C10.D41C6, D10⋊C4.1C6, (C2×C12).376D10, C1516(C422C2), C6.113(C4○D20), C30.185(C4○D4), (C2×C30).334C23, (C2×C60).446C22, (C6×Dic5).153C22, C51(C3×C422C2), C10.6(C3×C4○D4), C2.8(C3×C4○D20), (C2×C4).63(C6×D5), C22.38(D5×C2×C6), (C2×C20).77(C2×C6), (D5×C2×C6).76C22, (C3×C10.D4)⋊1C2, (C2×Dic5).4(C2×C6), (C22×D5).4(C2×C6), (C3×D10⋊C4).1C2, (C2×C10).17(C22×C6), (C2×C6).330(C22×D5), SmallGroup(480,669)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C3×C422D5
C1C5C10C2×C10C2×C30D5×C2×C6C3×D10⋊C4 — C3×C422D5
C5C2×C10 — C3×C422D5
C1C2×C6C4×C12

Generators and relations for C3×C422D5
 G = < a,b,c,d,e | a3=b4=c4=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=bc2, cd=dc, ece=b2c-1, ede=d-1 >

Subgroups: 384 in 120 conjugacy classes, 58 normal (16 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C2×C4, C23, D5, C10, C12, C2×C6, C2×C6, C15, C42, C22⋊C4, C4⋊C4, Dic5, C20, D10, C2×C10, C2×C12, C2×C12, C22×C6, C3×D5, C30, C422C2, C2×Dic5, C2×C20, C22×D5, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C3×Dic5, C60, C6×D5, C2×C30, C10.D4, D10⋊C4, C4×C20, C3×C422C2, C6×Dic5, C2×C60, D5×C2×C6, C422D5, C3×C10.D4, C3×D10⋊C4, C4×C60, C3×C422D5
Quotients: C1, C2, C3, C22, C6, C23, D5, C2×C6, C4○D4, D10, C22×C6, C3×D5, C422C2, C22×D5, C3×C4○D4, C6×D5, C4○D20, C3×C422C2, D5×C2×C6, C422D5, C3×C4○D20, C3×C422D5

Smallest permutation representation of C3×C422D5
On 240 points
Generators in S240
(1 41 21)(2 42 22)(3 43 23)(4 44 24)(5 45 25)(6 46 26)(7 47 27)(8 48 28)(9 49 29)(10 50 30)(11 51 31)(12 52 32)(13 53 33)(14 54 34)(15 55 35)(16 56 36)(17 57 37)(18 58 38)(19 59 39)(20 60 40)(61 101 81)(62 102 82)(63 103 83)(64 104 84)(65 105 85)(66 106 86)(67 107 87)(68 108 88)(69 109 89)(70 110 90)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)(121 161 141)(122 162 142)(123 163 143)(124 164 144)(125 165 145)(126 166 146)(127 167 147)(128 168 148)(129 169 149)(130 170 150)(131 171 151)(132 172 152)(133 173 153)(134 174 154)(135 175 155)(136 176 156)(137 177 157)(138 178 158)(139 179 159)(140 180 160)(181 221 201)(182 222 202)(183 223 203)(184 224 204)(185 225 205)(186 226 206)(187 227 207)(188 228 208)(189 229 209)(190 230 210)(191 231 211)(192 232 212)(193 233 213)(194 234 214)(195 235 215)(196 236 216)(197 237 217)(198 238 218)(199 239 219)(200 240 220)
(1 131 11 121)(2 132 12 122)(3 133 13 123)(4 134 14 124)(5 135 15 125)(6 136 16 126)(7 137 17 127)(8 138 18 128)(9 139 19 129)(10 140 20 130)(21 151 31 141)(22 152 32 142)(23 153 33 143)(24 154 34 144)(25 155 35 145)(26 156 36 146)(27 157 37 147)(28 158 38 148)(29 159 39 149)(30 160 40 150)(41 171 51 161)(42 172 52 162)(43 173 53 163)(44 174 54 164)(45 175 55 165)(46 176 56 166)(47 177 57 167)(48 178 58 168)(49 179 59 169)(50 180 60 170)(61 191 71 181)(62 192 72 182)(63 193 73 183)(64 194 74 184)(65 195 75 185)(66 196 76 186)(67 197 77 187)(68 198 78 188)(69 199 79 189)(70 200 80 190)(81 211 91 201)(82 212 92 202)(83 213 93 203)(84 214 94 204)(85 215 95 205)(86 216 96 206)(87 217 97 207)(88 218 98 208)(89 219 99 209)(90 220 100 210)(101 231 111 221)(102 232 112 222)(103 233 113 223)(104 234 114 224)(105 235 115 225)(106 236 116 226)(107 237 117 227)(108 238 118 228)(109 239 119 229)(110 240 120 230)
(1 66 6 61)(2 67 7 62)(3 68 8 63)(4 69 9 64)(5 70 10 65)(11 76 16 71)(12 77 17 72)(13 78 18 73)(14 79 19 74)(15 80 20 75)(21 86 26 81)(22 87 27 82)(23 88 28 83)(24 89 29 84)(25 90 30 85)(31 96 36 91)(32 97 37 92)(33 98 38 93)(34 99 39 94)(35 100 40 95)(41 106 46 101)(42 107 47 102)(43 108 48 103)(44 109 49 104)(45 110 50 105)(51 116 56 111)(52 117 57 112)(53 118 58 113)(54 119 59 114)(55 120 60 115)(121 186 126 181)(122 187 127 182)(123 188 128 183)(124 189 129 184)(125 190 130 185)(131 196 136 191)(132 197 137 192)(133 198 138 193)(134 199 139 194)(135 200 140 195)(141 206 146 201)(142 207 147 202)(143 208 148 203)(144 209 149 204)(145 210 150 205)(151 216 156 211)(152 217 157 212)(153 218 158 213)(154 219 159 214)(155 220 160 215)(161 226 166 221)(162 227 167 222)(163 228 168 223)(164 229 169 224)(165 230 170 225)(171 236 176 231)(172 237 177 232)(173 238 178 233)(174 239 179 234)(175 240 180 235)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)(161 162 163 164 165)(166 167 168 169 170)(171 172 173 174 175)(176 177 178 179 180)(181 182 183 184 185)(186 187 188 189 190)(191 192 193 194 195)(196 197 198 199 200)(201 202 203 204 205)(206 207 208 209 210)(211 212 213 214 215)(216 217 218 219 220)(221 222 223 224 225)(226 227 228 229 230)(231 232 233 234 235)(236 237 238 239 240)
(1 5)(2 4)(6 10)(7 9)(11 15)(12 14)(16 20)(17 19)(21 25)(22 24)(26 30)(27 29)(31 35)(32 34)(36 40)(37 39)(41 45)(42 44)(46 50)(47 49)(51 55)(52 54)(56 60)(57 59)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)(81 100)(82 99)(83 98)(84 97)(85 96)(86 95)(87 94)(88 93)(89 92)(90 91)(101 120)(102 119)(103 118)(104 117)(105 116)(106 115)(107 114)(108 113)(109 112)(110 111)(121 130)(122 129)(123 128)(124 127)(125 126)(131 140)(132 139)(133 138)(134 137)(135 136)(141 150)(142 149)(143 148)(144 147)(145 146)(151 160)(152 159)(153 158)(154 157)(155 156)(161 170)(162 169)(163 168)(164 167)(165 166)(171 180)(172 179)(173 178)(174 177)(175 176)(181 195)(182 194)(183 193)(184 192)(185 191)(186 200)(187 199)(188 198)(189 197)(190 196)(201 215)(202 214)(203 213)(204 212)(205 211)(206 220)(207 219)(208 218)(209 217)(210 216)(221 235)(222 234)(223 233)(224 232)(225 231)(226 240)(227 239)(228 238)(229 237)(230 236)

G:=sub<Sym(240)| (1,41,21)(2,42,22)(3,43,23)(4,44,24)(5,45,25)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100)(121,161,141)(122,162,142)(123,163,143)(124,164,144)(125,165,145)(126,166,146)(127,167,147)(128,168,148)(129,169,149)(130,170,150)(131,171,151)(132,172,152)(133,173,153)(134,174,154)(135,175,155)(136,176,156)(137,177,157)(138,178,158)(139,179,159)(140,180,160)(181,221,201)(182,222,202)(183,223,203)(184,224,204)(185,225,205)(186,226,206)(187,227,207)(188,228,208)(189,229,209)(190,230,210)(191,231,211)(192,232,212)(193,233,213)(194,234,214)(195,235,215)(196,236,216)(197,237,217)(198,238,218)(199,239,219)(200,240,220), (1,131,11,121)(2,132,12,122)(3,133,13,123)(4,134,14,124)(5,135,15,125)(6,136,16,126)(7,137,17,127)(8,138,18,128)(9,139,19,129)(10,140,20,130)(21,151,31,141)(22,152,32,142)(23,153,33,143)(24,154,34,144)(25,155,35,145)(26,156,36,146)(27,157,37,147)(28,158,38,148)(29,159,39,149)(30,160,40,150)(41,171,51,161)(42,172,52,162)(43,173,53,163)(44,174,54,164)(45,175,55,165)(46,176,56,166)(47,177,57,167)(48,178,58,168)(49,179,59,169)(50,180,60,170)(61,191,71,181)(62,192,72,182)(63,193,73,183)(64,194,74,184)(65,195,75,185)(66,196,76,186)(67,197,77,187)(68,198,78,188)(69,199,79,189)(70,200,80,190)(81,211,91,201)(82,212,92,202)(83,213,93,203)(84,214,94,204)(85,215,95,205)(86,216,96,206)(87,217,97,207)(88,218,98,208)(89,219,99,209)(90,220,100,210)(101,231,111,221)(102,232,112,222)(103,233,113,223)(104,234,114,224)(105,235,115,225)(106,236,116,226)(107,237,117,227)(108,238,118,228)(109,239,119,229)(110,240,120,230), (1,66,6,61)(2,67,7,62)(3,68,8,63)(4,69,9,64)(5,70,10,65)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115)(121,186,126,181)(122,187,127,182)(123,188,128,183)(124,189,129,184)(125,190,130,185)(131,196,136,191)(132,197,137,192)(133,198,138,193)(134,199,139,194)(135,200,140,195)(141,206,146,201)(142,207,147,202)(143,208,148,203)(144,209,149,204)(145,210,150,205)(151,216,156,211)(152,217,157,212)(153,218,158,213)(154,219,159,214)(155,220,160,215)(161,226,166,221)(162,227,167,222)(163,228,168,223)(164,229,169,224)(165,230,170,225)(171,236,176,231)(172,237,177,232)(173,238,178,233)(174,239,179,234)(175,240,180,235), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160)(161,162,163,164,165)(166,167,168,169,170)(171,172,173,174,175)(176,177,178,179,180)(181,182,183,184,185)(186,187,188,189,190)(191,192,193,194,195)(196,197,198,199,200)(201,202,203,204,205)(206,207,208,209,210)(211,212,213,214,215)(216,217,218,219,220)(221,222,223,224,225)(226,227,228,229,230)(231,232,233,234,235)(236,237,238,239,240), (1,5)(2,4)(6,10)(7,9)(11,15)(12,14)(16,20)(17,19)(21,25)(22,24)(26,30)(27,29)(31,35)(32,34)(36,40)(37,39)(41,45)(42,44)(46,50)(47,49)(51,55)(52,54)(56,60)(57,59)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,100)(82,99)(83,98)(84,97)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,150)(142,149)(143,148)(144,147)(145,146)(151,160)(152,159)(153,158)(154,157)(155,156)(161,170)(162,169)(163,168)(164,167)(165,166)(171,180)(172,179)(173,178)(174,177)(175,176)(181,195)(182,194)(183,193)(184,192)(185,191)(186,200)(187,199)(188,198)(189,197)(190,196)(201,215)(202,214)(203,213)(204,212)(205,211)(206,220)(207,219)(208,218)(209,217)(210,216)(221,235)(222,234)(223,233)(224,232)(225,231)(226,240)(227,239)(228,238)(229,237)(230,236)>;

G:=Group( (1,41,21)(2,42,22)(3,43,23)(4,44,24)(5,45,25)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100)(121,161,141)(122,162,142)(123,163,143)(124,164,144)(125,165,145)(126,166,146)(127,167,147)(128,168,148)(129,169,149)(130,170,150)(131,171,151)(132,172,152)(133,173,153)(134,174,154)(135,175,155)(136,176,156)(137,177,157)(138,178,158)(139,179,159)(140,180,160)(181,221,201)(182,222,202)(183,223,203)(184,224,204)(185,225,205)(186,226,206)(187,227,207)(188,228,208)(189,229,209)(190,230,210)(191,231,211)(192,232,212)(193,233,213)(194,234,214)(195,235,215)(196,236,216)(197,237,217)(198,238,218)(199,239,219)(200,240,220), (1,131,11,121)(2,132,12,122)(3,133,13,123)(4,134,14,124)(5,135,15,125)(6,136,16,126)(7,137,17,127)(8,138,18,128)(9,139,19,129)(10,140,20,130)(21,151,31,141)(22,152,32,142)(23,153,33,143)(24,154,34,144)(25,155,35,145)(26,156,36,146)(27,157,37,147)(28,158,38,148)(29,159,39,149)(30,160,40,150)(41,171,51,161)(42,172,52,162)(43,173,53,163)(44,174,54,164)(45,175,55,165)(46,176,56,166)(47,177,57,167)(48,178,58,168)(49,179,59,169)(50,180,60,170)(61,191,71,181)(62,192,72,182)(63,193,73,183)(64,194,74,184)(65,195,75,185)(66,196,76,186)(67,197,77,187)(68,198,78,188)(69,199,79,189)(70,200,80,190)(81,211,91,201)(82,212,92,202)(83,213,93,203)(84,214,94,204)(85,215,95,205)(86,216,96,206)(87,217,97,207)(88,218,98,208)(89,219,99,209)(90,220,100,210)(101,231,111,221)(102,232,112,222)(103,233,113,223)(104,234,114,224)(105,235,115,225)(106,236,116,226)(107,237,117,227)(108,238,118,228)(109,239,119,229)(110,240,120,230), (1,66,6,61)(2,67,7,62)(3,68,8,63)(4,69,9,64)(5,70,10,65)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115)(121,186,126,181)(122,187,127,182)(123,188,128,183)(124,189,129,184)(125,190,130,185)(131,196,136,191)(132,197,137,192)(133,198,138,193)(134,199,139,194)(135,200,140,195)(141,206,146,201)(142,207,147,202)(143,208,148,203)(144,209,149,204)(145,210,150,205)(151,216,156,211)(152,217,157,212)(153,218,158,213)(154,219,159,214)(155,220,160,215)(161,226,166,221)(162,227,167,222)(163,228,168,223)(164,229,169,224)(165,230,170,225)(171,236,176,231)(172,237,177,232)(173,238,178,233)(174,239,179,234)(175,240,180,235), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160)(161,162,163,164,165)(166,167,168,169,170)(171,172,173,174,175)(176,177,178,179,180)(181,182,183,184,185)(186,187,188,189,190)(191,192,193,194,195)(196,197,198,199,200)(201,202,203,204,205)(206,207,208,209,210)(211,212,213,214,215)(216,217,218,219,220)(221,222,223,224,225)(226,227,228,229,230)(231,232,233,234,235)(236,237,238,239,240), (1,5)(2,4)(6,10)(7,9)(11,15)(12,14)(16,20)(17,19)(21,25)(22,24)(26,30)(27,29)(31,35)(32,34)(36,40)(37,39)(41,45)(42,44)(46,50)(47,49)(51,55)(52,54)(56,60)(57,59)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,100)(82,99)(83,98)(84,97)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,150)(142,149)(143,148)(144,147)(145,146)(151,160)(152,159)(153,158)(154,157)(155,156)(161,170)(162,169)(163,168)(164,167)(165,166)(171,180)(172,179)(173,178)(174,177)(175,176)(181,195)(182,194)(183,193)(184,192)(185,191)(186,200)(187,199)(188,198)(189,197)(190,196)(201,215)(202,214)(203,213)(204,212)(205,211)(206,220)(207,219)(208,218)(209,217)(210,216)(221,235)(222,234)(223,233)(224,232)(225,231)(226,240)(227,239)(228,238)(229,237)(230,236) );

G=PermutationGroup([[(1,41,21),(2,42,22),(3,43,23),(4,44,24),(5,45,25),(6,46,26),(7,47,27),(8,48,28),(9,49,29),(10,50,30),(11,51,31),(12,52,32),(13,53,33),(14,54,34),(15,55,35),(16,56,36),(17,57,37),(18,58,38),(19,59,39),(20,60,40),(61,101,81),(62,102,82),(63,103,83),(64,104,84),(65,105,85),(66,106,86),(67,107,87),(68,108,88),(69,109,89),(70,110,90),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100),(121,161,141),(122,162,142),(123,163,143),(124,164,144),(125,165,145),(126,166,146),(127,167,147),(128,168,148),(129,169,149),(130,170,150),(131,171,151),(132,172,152),(133,173,153),(134,174,154),(135,175,155),(136,176,156),(137,177,157),(138,178,158),(139,179,159),(140,180,160),(181,221,201),(182,222,202),(183,223,203),(184,224,204),(185,225,205),(186,226,206),(187,227,207),(188,228,208),(189,229,209),(190,230,210),(191,231,211),(192,232,212),(193,233,213),(194,234,214),(195,235,215),(196,236,216),(197,237,217),(198,238,218),(199,239,219),(200,240,220)], [(1,131,11,121),(2,132,12,122),(3,133,13,123),(4,134,14,124),(5,135,15,125),(6,136,16,126),(7,137,17,127),(8,138,18,128),(9,139,19,129),(10,140,20,130),(21,151,31,141),(22,152,32,142),(23,153,33,143),(24,154,34,144),(25,155,35,145),(26,156,36,146),(27,157,37,147),(28,158,38,148),(29,159,39,149),(30,160,40,150),(41,171,51,161),(42,172,52,162),(43,173,53,163),(44,174,54,164),(45,175,55,165),(46,176,56,166),(47,177,57,167),(48,178,58,168),(49,179,59,169),(50,180,60,170),(61,191,71,181),(62,192,72,182),(63,193,73,183),(64,194,74,184),(65,195,75,185),(66,196,76,186),(67,197,77,187),(68,198,78,188),(69,199,79,189),(70,200,80,190),(81,211,91,201),(82,212,92,202),(83,213,93,203),(84,214,94,204),(85,215,95,205),(86,216,96,206),(87,217,97,207),(88,218,98,208),(89,219,99,209),(90,220,100,210),(101,231,111,221),(102,232,112,222),(103,233,113,223),(104,234,114,224),(105,235,115,225),(106,236,116,226),(107,237,117,227),(108,238,118,228),(109,239,119,229),(110,240,120,230)], [(1,66,6,61),(2,67,7,62),(3,68,8,63),(4,69,9,64),(5,70,10,65),(11,76,16,71),(12,77,17,72),(13,78,18,73),(14,79,19,74),(15,80,20,75),(21,86,26,81),(22,87,27,82),(23,88,28,83),(24,89,29,84),(25,90,30,85),(31,96,36,91),(32,97,37,92),(33,98,38,93),(34,99,39,94),(35,100,40,95),(41,106,46,101),(42,107,47,102),(43,108,48,103),(44,109,49,104),(45,110,50,105),(51,116,56,111),(52,117,57,112),(53,118,58,113),(54,119,59,114),(55,120,60,115),(121,186,126,181),(122,187,127,182),(123,188,128,183),(124,189,129,184),(125,190,130,185),(131,196,136,191),(132,197,137,192),(133,198,138,193),(134,199,139,194),(135,200,140,195),(141,206,146,201),(142,207,147,202),(143,208,148,203),(144,209,149,204),(145,210,150,205),(151,216,156,211),(152,217,157,212),(153,218,158,213),(154,219,159,214),(155,220,160,215),(161,226,166,221),(162,227,167,222),(163,228,168,223),(164,229,169,224),(165,230,170,225),(171,236,176,231),(172,237,177,232),(173,238,178,233),(174,239,179,234),(175,240,180,235)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160),(161,162,163,164,165),(166,167,168,169,170),(171,172,173,174,175),(176,177,178,179,180),(181,182,183,184,185),(186,187,188,189,190),(191,192,193,194,195),(196,197,198,199,200),(201,202,203,204,205),(206,207,208,209,210),(211,212,213,214,215),(216,217,218,219,220),(221,222,223,224,225),(226,227,228,229,230),(231,232,233,234,235),(236,237,238,239,240)], [(1,5),(2,4),(6,10),(7,9),(11,15),(12,14),(16,20),(17,19),(21,25),(22,24),(26,30),(27,29),(31,35),(32,34),(36,40),(37,39),(41,45),(42,44),(46,50),(47,49),(51,55),(52,54),(56,60),(57,59),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71),(81,100),(82,99),(83,98),(84,97),(85,96),(86,95),(87,94),(88,93),(89,92),(90,91),(101,120),(102,119),(103,118),(104,117),(105,116),(106,115),(107,114),(108,113),(109,112),(110,111),(121,130),(122,129),(123,128),(124,127),(125,126),(131,140),(132,139),(133,138),(134,137),(135,136),(141,150),(142,149),(143,148),(144,147),(145,146),(151,160),(152,159),(153,158),(154,157),(155,156),(161,170),(162,169),(163,168),(164,167),(165,166),(171,180),(172,179),(173,178),(174,177),(175,176),(181,195),(182,194),(183,193),(184,192),(185,191),(186,200),(187,199),(188,198),(189,197),(190,196),(201,215),(202,214),(203,213),(204,212),(205,211),(206,220),(207,219),(208,218),(209,217),(210,216),(221,235),(222,234),(223,233),(224,232),(225,231),(226,240),(227,239),(228,238),(229,237),(230,236)]])

138 conjugacy classes

class 1 2A2B2C2D3A3B4A···4F4G4H4I5A5B6A···6F6G6H10A···10F12A···12L12M···12R15A15B15C15D20A···20X30A···30L60A···60AV
order12222334···4444556···66610···1012···1212···121515151520···2030···3060···60
size111120112···2202020221···120202···22···220···2022222···22···22···2

138 irreducible representations

dim1111111122222222
type++++++
imageC1C2C2C2C3C6C6C6D5C4○D4D10C3×D5C3×C4○D4C6×D5C4○D20C3×C4○D20
kernelC3×C422D5C3×C10.D4C3×D10⋊C4C4×C60C422D5C10.D4D10⋊C4C4×C20C4×C12C30C2×C12C42C10C2×C4C6C2
# reps13312662266412122448

Matrix representation of C3×C422D5 in GL4(𝔽61) generated by

47000
04700
00470
00047
,
11000
01100
00130
00460
,
314500
603000
00110
00011
,
606000
191800
0010
0001
,
01700
18000
0010
00460
G:=sub<GL(4,GF(61))| [47,0,0,0,0,47,0,0,0,0,47,0,0,0,0,47],[11,0,0,0,0,11,0,0,0,0,1,4,0,0,30,60],[31,60,0,0,45,30,0,0,0,0,11,0,0,0,0,11],[60,19,0,0,60,18,0,0,0,0,1,0,0,0,0,1],[0,18,0,0,17,0,0,0,0,0,1,4,0,0,0,60] >;

C3×C422D5 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes_2D_5
% in TeX

G:=Group("C3xC4^2:2D5");
// GroupNames label

G:=SmallGroup(480,669);
// by ID

G=gap.SmallGroup(480,669);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,701,176,1598,268,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^4=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=b*c^2,c*d=d*c,e*c*e=b^2*c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽